

Messbericht der mobilen Fluglärmmessung in Maria Enzersdorf, Burg Liechtenstein

Berichtszeitraum: 10. Jänner bis 30. Jänner 2014

Inhalt

1 Einführung

1.1. 1.2. 1.3.	Messsystem FANOMOS Messgeräte und Einstellungen Standort der Messstation assung der Schallereignisse	Seite 3 Seite 3 Seite 4
2.1. 2.2.	Methodik und Geräuscherfassung Zuordnung zu Fluglärmereignissen	Seite 5 Seite 5
3 Aus	swertung der Fluglärmmessung	
3.1.	Auswertungsmethode und Erfassungsquoten	Seite 6
3.2.	Überflughöhen der für den Messpunkt relevanten Flugbewegungen	Seite 6
3.3.	Maximalpegelverteilung der einzelnen An- und Abflugrouten	Seite 7
3.4.	Maximalpegelverteilung der einzelnen Flugzeugtypen	Seite 8
3.5.	Äquivalente Dauerschallpegel (LEQ) für die versch. Betriebszustände	Seite 9
3.6.	Grafik zum Verlauf des Dauerschallpegels über den Messzeitraum	Seite 10
4 Ver	zeichnisse	
4.1	Abkürzungeverzeichnie und Erläuterung der versch Dauerschallagest	Coite 11
4.1. 4.2.	Abbildungsverzeichnis und Erläuterung der versch. Dauerschallpegel	Seite 11
4.2. 4.3.	Abbildungsverzeichnis Tabellenverzeichnis	Seite 11 Seite 11
4.3.	i abelietivei zeicitilis	Seite 11

Stand 04.04.2014 Seite 2 von 11

1 Einführung

1.1. Messsystem FANOMOS

Mit FANOMOS (Flight Track and Noise Monitoring System) wurde bereits im Jahr 1990 am Flughafen Wien-Schwechat eine Fluglärm-Überwachungsanlage in Betrieb genommen.

FANOMOS misst die Fluggeräuschimmissionen aller startenden und landenden Flugzeuge und zeichnet in Verbindung mit Radardaten Flugspur, Geschwindigkeit und Flughöhe auf. Weiters liefert das System Daten für die Kontrolle von Lärmzonenberechnungen.

Am Flughafen Wien werden an 15 fixen und 3 mobilen Messstellen in Siedlungsgebieten in der Umgebung des Flughafens die Schallpegel der Überflüge registriert, und daraus die Werte für Tages-LEQ (06:00 Uhr -22:00 Uhr) und Nacht-LEQ (22:00 Uhr -06:00 Uhr) ermittelt.

Wesentliche Komponenten des Messsystems sind eine wetterfeste Mikrofoneinheit mit Windschirm, ein Messrechner (Analysator), ein GPS-System und eine Kommunikationseinheit, die eine kontinuierliche Datenübertragung gewährleistet. Eine unabhängige Energieversorgung wird mittels Brennstoffzelle gewährleistet.

Für die Geräuschauswertung wird eine spezielle Software eingesetzt, die eine automatische Unterscheidung zwischen Flug- und Fremdgeräusch trifft und eine Zuordnung der Fluginformationen eines in der Nähe befindlichen Flugzeuges durchführt.

1.2. Messgeräte und Einstellungen

Messgerät: B&K-Analysator Typ 4441

Mikrofoneinheit: B&K Typ 4184

Messhöhe über Grund: 4 m

Messbereich: 20 - 130 dB

Frequenzbewertung: A
Zeitbewertung: Slow

Ansprechpegel für Ereignisse:

Tag (06:00 Uhr bis 22:00 Uhr): 55 dB Nacht (22:00 Uhr bis 06:00 Uhr): 50 dB Mindestdauer: 10 Sek.

Eichtechnische Prüfung:

Die verwendeten Messgeräte und Mikrofone entsprechen der Genauigkeitsklasse 0,7 des österr. Maß- und Eichgesetzes, was eine Messgenauigkeit von +/- 0,7 dB ergibt.

Die eichtechnischen Prüfungen erfolgen vorschriftsgemäß alle 2 Jahre in Übereinstimmung mit IEC 60651 Kl. 1, IEC 60804 Kl. 1 und IEC 61672 Kl.1.

Stand 04.04.2014 Seite 3 von 11

1 Einführung

1.3. Standort der Messstelle

Messpunkt: Maria Enzersdorf

Burg Liechtenstein

Abb. 1: Übersichtskarte:

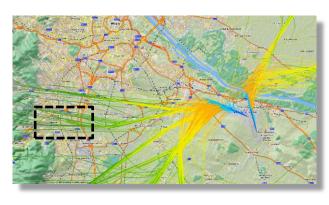


Abb. 2: Detailkarte:

... Detailausschnitt

... Messpunkt

Abb. 3: Foto der Messtelle:

Abb. 4: Messgerät und Modemeinheit:

Stand 04.04.2014 Seite 4 von 11

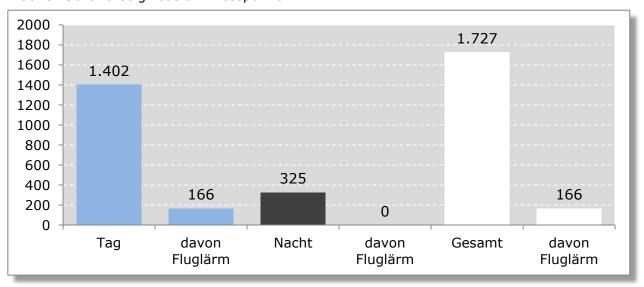
2 Erfassung der Schallereignisse

2.1. Methodik und Geräuscherfassung

Als "Schallereignis" gelten jene Geräusche, die einen Messschwellenwert für eine bestimmte Mindestdauer übersteigen. Hierbei ist zwischen Fluglärmereignissen und Fremdgeräuschen (wie z.B. KFZ, Rasenmäher, ...) zu unterscheiden.

Tab. 1: Schallereignisse am Messpunkt für den gesamten Messzeitraum

registrierter Schallereignisse innerhalb des Messzeitraums						
Tag Nacht Gesamt						
06:00 Uhr - 22:00 Uhr	22:00 Uhr - 06:00 Uhr	00:00 Uhr - 24:00 Uhr				
1.402	325	1.727				


2.2. Zuordnung zu Fluglärmereignissen

Die Zuordnung zu Fluglärmereignissen basiert auf einer Korrelation mit den Radardaten der österr. Flugsicherung (Austro Control). Hierbei wird die Fluginformationen eines in der Nähe befindlichen Flugzeuges automatisch durchgeführt und manuell überprüft.

Tab. 2: zugeordneten Fluglärmereignisse am Messpunkt für den gesamten Messzeitraum

zugeordneten Fluglärmereignisse innerhalb des Messzeitraums						
Tag Nacht Gesamt						
06:00 Uhr - 22:00 Uhr	22:00 Uhr - 06:00 Uhr	00:00 Uhr - 24:00 Uhr				
166	0	166				

Abb. 5: Schallereeignisse am Messpunkt

Stand 04.04.2014 Seite 5 von 11

3.1. Auswertungsmethode und Erfassungsquoten

Zur Erfassung der Anzahl aller Flüge im Bereich für den Messzeitraum wurden im Umkreis von 4.000 m um den Messpunkt alle Flugspuren anhand der Radardaten analysiert und den jeweiligen Start- und Landerichtungen bzw. den für den Messpunkt relevanten Flugbewegungen zugeordnet.

Tab. 3: Anteil der relevanten Flugbewegungen im Bereich

Starts auf LUGIM1C, MOTIX1C	davon im Bereich	Anteil
616	521	84,6%

Tab. 4: Erfassungsquote der relevanten Flugbewegungen

relevante Flugbewegungen Anzahl		Anzahl der zugeordneten	Erfassungs-
im Bereich		Lärmereignisse	quote
LUGIM1C, MOTIX1C	521	146	28,0%

Nicht erfasste Flugbewegungen sind

- Flugbewegungen, welche von Fremdgeräuschen (z.B.: KFZ, Rasenmäher) überlagert wurden
- Flugbewegungen, die aufgrund ihrer Entfernung zum Messpunkt bzw. der Type des Flugzeuges die Mindestdauer bzw. den Mindestpegel nicht erreichen.

3.2. Überflughöhen der für den Messpunkt relevanten Flugbewegungen

Nachstehende Tabelle zeigt die durchschnittlichen Überflughöhen am Messpunkt.

Tab. 5: Überflughöhen der relevanten Flugbewegungen

Höhen in ft MSL	Höhe 90 % der Flüge über	durchschnittliche Höhe	
Starts auf LUGIM1C, MOTIX1C	7.400 ft MSL	8.900 ft MSL	

Stand 04.04.2014 Seite 6 von 11

3.3. Maximalpegelverteilung der einzelnen An- und Abflugrouten

Die Tabelle zeigt die für die angegebene Pistenrichtung bzw. Abflugstrecke energetisch gemittelten Maximalpegel in dBA der identifizierten Überflüge über dem Messpunkt.

Tab. 6: Maximalpegel für Landungen in dBA

Landungen Pistenrichtung	Anzahl	Anteil in %	* Durchschn. MaxPegel	* Durchschn. Dauer
Piste 11	2	50,0%	61,4	10,3
Piste 16	0	0,0%	-	-
Piste 29	0	0,0%	-	-
Piste 34	2	50,0%	62,3	23,8
Summe Landungen	4	100,0%	61,8	17,0

Tab. 7: Maximalpegel für Starts in dBA

Starts Piste 29 Pistenrichtung Abflugstrecke		Anzahl	Anteil in %	* Durchschn. MaxPegel	* Durchschn. Dauer
Pistenrichtung	Adriugstrecke			Maxreger	Dauei
Piste 29	KOVEL2C	1	0,6%	59,7	14,5
Piste 29	LUGIM1C	77	47,8%	63,3	22,9
Piste 29	MOTIX1C	69	42,9%	63,6	22,9
Piste 29	SITNI2X	1	0,6%	58,6	10,0
Piste 29	SITNI4C	9	5,6%	61,4	18,4
Piste 29	SNU2C	4	2,5%	61,4	20,5
Summe St	arts Piste 29	161	100,0%	63,3	22,5

Tab. 8: Maximalpegel für Fremdgeräusche in dBA

Erfasste Fremdgeräusche: 1.556	77,1	30,2
--------------------------------	------	------

*) Anmerkung:

Energetisch gemittelter Maximalpegel in dBA Durchschnittliche Dauer in Sekunden

Stand 04.04.2014 Seite 7 von 11

3.4. Maximalpegelverteilung der einzelnen Flugzeugtypen

Die Tabelle zeigt die Verteilung der Maximalpegel der Flugzeugtypen für ausgewählte Pistenrichtungen bzw. Abflugstrecken geordnet nach der Höhe der verursachten Maximalpegel.

Tab. 9: Maximalpegel der einzelnen Flugzeugtypen für relevante Flugbewegungen in dBA

Starts auf Piste 29, Abflugstrecken LUGIM1C, MOTIX1C							
Flugzeugtyp	Code	Anzahl	Anteil in %	* Durchschn. MaxPegel	* Durchschn. Dauer		
BOEING 767/300 W	B7673W	7	4,8%	68,1	44,1		
BOEING 747	B7478F	3	2,1%	67,9	39,0		
EMBRAER 190	E190	21	14,4%	64,9	21,3		
FOKKER 100	FK100	9	6,2%	63,3	30,0		
AIRBUS A321	A321	24	16,4%	63,3	24,4		
AIRBUS A319	A319	7	4,8%	62,3	13,1		
AIRBUS A321/200	A3212	21	14,4%	61,6	22,9		
AIRBUS A320	A320	47	32,2%	61,5	18,5		
Typen < 3 Erfassungen		7	4,8%	-	-		
Summe	146	100,0%	63,4	22,9			

^{*)} Anmerkung:


Energetisch gemittelter Maximalpegel in dBA Durchschnittliche Dauer in Sekunden

Stand 04.04.2014 Seite 8 von 11

3.5. Äquivalenter Dauerschallpegel (LEQ) für die verschiedenen Betriebszustände

Abb. 6: LEQ für den gesamten Messzeitraum während der Messdauer (Gesamt: 461 Stunden)

Als Information, welche Pistenbetriebsrichtungen am Messpunkt die höhere Schallimmission verursachen, werden die jeweiligen LEQs auch auf jene Zeiträume bezogen, in denen die gleichen Windverhältnisse geherrscht haben (westliche Winde – Windstille – östlichen Winde).

Abb. 7: LEQ bei Pistenbetriebsrichtung "westliche Winde"

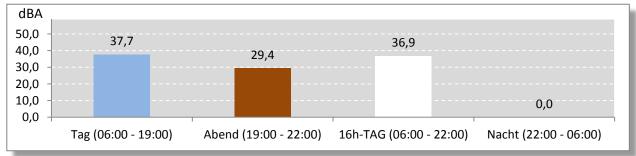


Abb. 8: LEQ bei Pistenbetriebsrichtung "Windstille"

157 Stunden im Messzeitraum

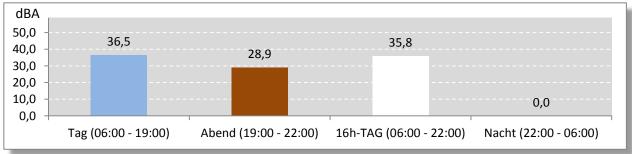
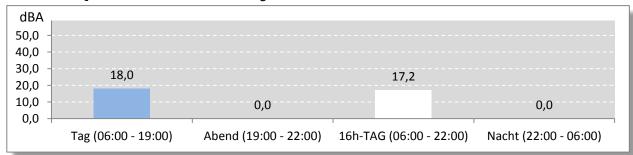



Abb. 9: LEQ bei Pistenbetriebsrichtung "östliche Winde"

106 Stunden im Messzeitraum

Stand 04.04.2014 Seite 9 von 11

Messdauer: 461 Stunden

3 Auswertung der Fluglärmmessung

3.6. Grafiken zum Verlauf des Dauerschallpegels über den Messzeitraum

Die Grafiken zeigen den Verlauf der täglichen Dauerschallpegel über den Messzeitraum und den Verlauf der über den Messzeitraum gemittelten Stunden-LEQs für Flugverkehr.

Abb.9: LEQ für Flugverkehr über den Messzeitraum

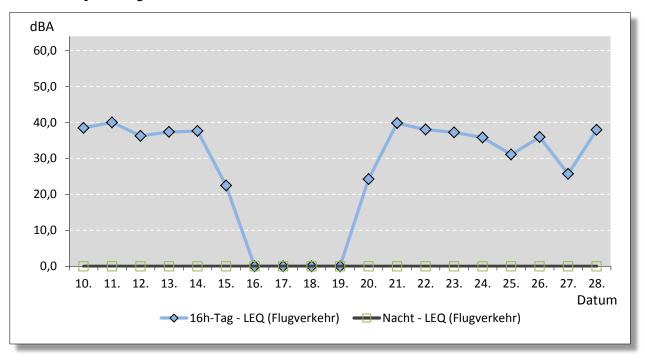
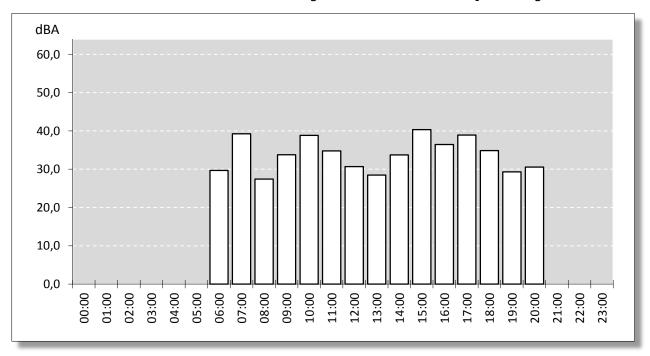



Abb. 10: Verlauf der über den Meßzeitraum gemittelten Stunden-LEQs für Flugverkehr

Stand 04.04.2014 Seite 10 von 11

4 Verzeichnisse

4.1. Abkürzungen und Erläuterung der verschiedenen Dauerschallpegel

LEQ:

Äquivalenter Dauerschallpegel: Energetische Summe der einzelnen Schallereignisse bezogen auf einen bestimmten Zeitraum unter Berücksichtigung des jeweiligen Spitzenpegels, der Dauer und der Häufigkeit des Einzelereignisses; ergibt einen Zahlenwert, der der Summe der einzelnen Lärmereignisse innerhalb des Betrachtungszeitraumes entspricht, d.h. äquivalent ist.

Tages-LEQ:

Äquivalenter Dauerschallpegel bezogen auf den Tag (06:00 Uhr bis 19:00 Uhr)

Abend-LEQ:

Äquivalenter Dauerschallpegel bezogen auf den Abend (19:00 Uhr bis 22:00 Uhr)

Tages-LEQ (16h):

Äguivalenter Dauerschallpegel bezogen auf 16 Stunden (06:00 Uhr bis 22:00 Uhr)

Nacht-LEQ:

Äquivalenter Dauerschallpegel bezogen auf die Nacht (22.00 Uhr bis 06:00 Uhr)

4.2. Abbildungsverzeichnis

Abb. 1: Übersichtskarte Messpunkt

Abb. 2: Detailkarte Messpunkt

Abb. 3: Foto der Messstelle

Abb. 4: Messgerät und Modemeinheit

Abb. 5: Schallereignisse am Messpunkt

Abb. 6: LEQ bei Pistenbetriebsrichtung "westliche Winde"

Abb. 7: LEQ bei Pistenbetriebsrichtung "Windstille"

Abb. 8: LEQ bei Pistenbetriebsrichtung "östliche Winde"

Abb. 9: LEQ für Flugverkehr über den Messzeitraum

Abb. 10: Verlauf der über den Meßzeitraum gemittelten Stunden-LEQs für Flugverkehr

4.3. Tabellenverzeichnis

Tab. 1: Schallereignisse am Messpunkt für den gesamten Messzeitraum

Tab. 2: zugeordnete Fluglärmereignisse am Messpunkt

Tab. 3: Anteil der relevanten Flugbewegungen im Bereich

Tab. 4: Erfassungsquote der relevanten Flugbewegungen

Tab. 5: Überflughöhen der relevanten Flugbewegungen

Tab. 6: Maximalpegel für Landungen in dBA

Tab. 7: Maximalpegel für Starts in dBA

Tab. 8: Maximalpegel für Fremdgeräusche in dBA

Tab. 9: Maximalpegel der einzelnen Flugzeugtypen für relevante Flugbewegungen

Stand 04.04.2014 Seite 11 von 11